Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559152

RESUMO

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

2.
Front Microbiol ; 15: 1346340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596380

RESUMO

Background: Polymyxin B (PMB) and polymyxin E (colistin, CST) are polymyxin antibiotics, which are considered last-line therapeutic options against multidrug-resistant Gram-negative bacteria in serious infections. However, there is increasing risk of resistance to antimicrobial drugs. Effective efflux pump inhibitors (EPIs) should be developed to help combat efflux pump-mediated antibiotic resistance. Methods: Chryseobacterium sp. PL22-22A was isolated from aquaculture sewage under selection with 8 mg/L PMB, and then its genome was sequenced using Oxford Nanopore and BGISEQ-500 platforms. Cpr (Chryseobacterium Polymyxins Resistance) genes encoding a major facilitator superfamily-type tripartite efflux system, were found in the genome. These genes, and the gene encoding a truncation mutant of CprB from which sequence called CprBc was deleted, were amplified and expressed/co-expressed in Escherichia coli DH5α. Minimum inhibitory concentrations (MICs) of polymyxins toward the various E. coli heterologous expression strains were tested in the presence of 2-128 mg/L PMB or CST. The pumping activity of CprABC was assessed via structural modeling using Discovery Studio 2.0 software. Moreover, the influence on MICs of baicalin, a novel MFS EPI, was determined, and the effect was analyzed based on homology modeling. Results: Multidrug-resistant bacterial strain Chryseobacterium sp. PL22-22A was isolated in this work; it has notable resistance to polymyxin, with MICs for PMB and CST of 96 and 128 mg/L, respectively. A novel MFS-type tripartite efflux system, named CprABC, was identified in the genome of Chryseobacterium sp. PL22-22A. Heterologous expression and EPI assays indicated that the CprABC system is responsible for the polymyxin resistance of Chryseobacterium sp. PL22-22A. Structural modeling suggested that this efflux system provides a continuous conduit that runs from the CprB funnel through the CprC porin domain to pump polymyxins out of the cell. A specific C-terminal α-helix, CprBc, has an activation function on polymyxin excretion by CprB. The flavonoid compound baicalin was found to affect the allostery of CprB and/or obstruct the substrate conduit, and thus to inhibit extracellular polymyxin transport by CprABC. Conclusion: Novel MFS-type tripartite efflux system CprABC in Chryseobacterium sp. PL22-22A mediates resistance to polymyxins, and baicalin is a promising EPI.

3.
Sci Adv ; 10(16): eadl1856, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640241

RESUMO

Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Humanos , Automonitorização da Glicemia , Glicemia , 60431 , Reprodutibilidade dos Testes , Glucose , Diabetes Mellitus/diagnóstico
4.
Cancer Lett ; : 216875, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643837

RESUMO

Mesenchymal glioma stem cells (MES GSCs) are a subpopulation of cells in glioblastoma (GBM) that contribute to a worse prognosis owing to their highly aggressive nature and resistance to radiation therapy. Here, OCT4 is characterized as a criticial factor in sustaining the stemness phenotype of MES GSC. We find that OCT4 is expressed intensively in MES GSC and is intimately associated with poor prognosis, moreover, OCT4 depletion leads to diminished invasive capacity and impairment of the stem phenotype in MES GSC. Subsequently, we demonstrated that USP5 is a deubiquitinating enzyme which directly interacts with OCT4 and preserves OCT4 stability through its deubiquitination. USP5 was additionally proven to be aberrantly over-expressed in MES GSCs, and its depletion resulted in a noticeable diminution of OCT4 and consequently a reduced self-renewal and tumorigenic capacity of MES GSCs, which can be substantially restored by ectopic expression of OCT4. In addition, we detected the dominant molecule that regulates USP5 transcription, E2F1, with dual luciferase reporter gene analysis. In combination, targeting the E2F1-USP5-OCT4 axis is a potentially emerging strategy for the therapy of GBM.

5.
J Chromatogr A ; 1722: 464884, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615558

RESUMO

The removal of excess bilirubin from blood is of great clinical importance. Reduced graphene oxide (rGO) is often used to efficiently remove bilirubin. However, thin rGO pieces tend to aggregate in the aqueous phase because they are hydrophobic. In this context, we propose an effective strategy based on the chitosan-assisted (CS-assisted) dispersion of rGO to produce high-performance bilirubin-adsorbing microspheres. CS possesses a hydrophobic CH structure, which offers strong hydrophobic interactions with rGO that assist its dispersion, and the large number of hydrophilic sites of CS increases the hydrophilicity of rGO. CS serves as a dispersant in a surfactant-like manner to achieve a homogeneous and stable CS/rGO dispersion by simply and gently stirring CS and rGO in a LiOH/KOH/urea/H2O system. Subsequently, CS/rGO hybrid microspheres were prepared by emulsification. CS ensures blood compatibility as a base material, and the entrapped rGO contributes to mechanical strength and a high adsorption capacity. The CS/rGO microspheres exhibited a high bilirubin adsorption capacity (215.56 mg/g), which is significantly higher than those of the rGO and CS microspheres. The determined mass-transfer factors revealed that the rich pores of the CS/rGO microspheres promote mass transfer during bilirubin adsorption (equilibrium is almost achieved within 30 min). The CS/rGO microspheres are promising candidates for bilirubin removal owing to a combination of high strength, blood compatibility, and high adsorption capacity.

6.
BMC Cardiovasc Disord ; 24(1): 180, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532364

RESUMO

BACKGROUND: Acute type A aortic dissection (AAAD) is a devastating disease. Human aortic smooth muscle cells (HASMCs) exhibit decreased proliferation and increased apoptosis, and integrin α5ß1 and FAK are important proangiogenic factors involved in regulating angiogenesis. The aim of this study was to investigate the role of integrin α5ß1 and FAK in patients with AAAD and the potential underlying mechanisms. METHODS: Aortic tissue samples were obtained from 8 patients with AAAD and 4 organ donors at Zhongshan Hospital of Fudan University. The level of apoptosis in the aortic tissues was assessed by immunohistochemical (IHC) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The expression of integrin α5ß1 and FAK was determined. Integrin α5ß1 was found to be significantly expressed in HASMCs, and its interaction with FAK was assessed via coimmunoprecipitation (Co-IP) analysis. Proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assays and flow cytometry after integrin α5ß1 deficiency. RESULTS: The levels of integrin α5ß1 and FAK were both significantly decreased in patients with AAAD. Downregulating the expression of integrin α5ß1-FAK strongly increased apoptosis and decreased proliferation in HASMCs, indicating that integrin α5ß1-FAK might play an important role in the development of AAAD. CONCLUSIONS: Downregulation of integrin α5ß1-FAK is associated with increased apoptosis and decreased proliferation in aortic smooth muscle cells and may be a potential therapeutic strategy for AAAD.


Assuntos
Dissecção Aórtica , Integrina alfa5beta1 , Humanos , Aorta/metabolismo , Apoptose , Integrina alfa5beta1/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
Bioorg Chem ; 146: 107285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547721

RESUMO

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Assuntos
Quinases Ciclina-Dependentes , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Descoberta de Drogas
8.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488622

RESUMO

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Assuntos
Núcleo Celular , Sinais de Localização Nuclear , Proteínas de Sinalização YAP , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas/metabolismo , Domínios WW , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
9.
Res Sq ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496675

RESUMO

Endocrine islet b cells comprise heterogenous cell subsets. Yet when/how these subsets are produced and how stable they are remain unknown. Addressing these questions is important for preventing/curing diabetes, because lower numbers of b cells with better secretory function is a high risk of this disease. Using combinatorial cell lineage tracing, scRNA-seq, and DNA methylation analysis, we show here that embryonic islet progenitors with distinct gene expression and DNA methylation produce b-cell subtypes of different function and viability in adult mice. The subtype with better function is enriched for genes involved in vesicular production/trafficking, stress response, and Ca2+-secretion coupling, which further correspond to differential DNA methylation in putative enhancers of these genes. Maternal overnutrition, a major diabetes risk factor, reduces the proportion of endocrine progenitors of the b-cell subtype with better-function via deregulating DNA methyl transferase 3a. Intriguingly, the gene signature that defines mouse b-cell subtypes can reliably divide human cells into two sub-populations while the proportion of b cells with better-function is reduced in diabetic donors. The implication of these results is that modulating DNA methylation in islet progenitors using maternal food supplements can be explored to improve b-cell function in the prevention and therapy of diabetes.

11.
Plant Mol Biol ; 114(1): 14, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324190

RESUMO

Excessive cadmium in rice grain in agricultural production is an important issue to be addressed in some southern regions of China. In this study, we constructed transgenic rice overexpressing OsVIT1 and OsVIT2 driven by 35S promoter in the cultivar ZH11. Compared with ZH11, OsVIT1 expression in leaves was significantly increased by 3-6.6 times and OsVIT2 expression in leaves was significantly increased by 2-2.5 times. Hydroponic experiments showed that overexpression of OsVIT1 and OsVIT2 increased the tolerance to Fe deficiency, significantly reduced Cd content in shoot and xylem sap, and had no effect on Cd tolerance in rice. Two years of field trials showed that the Fe content in the grain of OsVIT1 and OsVIT2 overexpressed materials was significantly reduced by 20-40% and the straw Fe content was significantly increased by 10-45%, and the grain Fe content distribution ratio was significantly decreased and the straw Fe distribution ratio was significantly increased compared with the wild type. The OsVIT1 and OsVIT2 overexpressed materials significantly reduced the Cd content of grain by 40-80% and the Cd content of straws by 37-77%, and the bioconcentration factor of Cd was significantly reduced in both grains and straw of OsVIT1 and OsVIT2 overexpressed materials. Overexpression of OsVIT1 and OsVIT2 did not affect the concentration of other metal ions in rice straw and grain. qRT-PCR analysis showed that the expression of the low affinity cation transporter OsLCT1 was significantly downregulated in the OsVIT1 and OsVIT2 overexpressed materials. In conclusion, overexpression of OsVIT1 and OsVIT2 reduced Cd accumulation in straw and grains, providing a strategy for Cd reduction in rice.


Assuntos
Cádmio , Oryza , Folhas de Planta , Agricultura , China , Grão Comestível , Proteínas de Membrana Transportadoras
12.
Discov Oncol ; 15(1): 45, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383815

RESUMO

OBJECTIVE: Our current study aimed to assess the relationship between TNF-related apoptosis-inducing ligand (TRAIL) and ferroptosis in non-small cell lung cancer (NSCLC) development. METHODS: The expression of TRAIL was detected by western blot, RT-qRCR and immunohistochemistry. The viability of NSCLC cells was analyzed by CCK-8 kit. The migration and invasion of NSCLC cells were detected by wound healing assay and transwell assay, respectively. Labile iron pool (LIP) was detected based on the calcein-acetoxymethyl ester method. Ferrous iron (Fe2+) and iron levels were assessed by detection kits. The levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured using corresponding detection kits. Mice tumor xenograft models were used for the in vivo research. RESULTS: The expression of TRAIL was reduced in H1299, NCL-H1395, and A549 cells compared with BEAS-2B cells. The up-regulation of TRAIL expression significantly reduced cell viability, invasion, and migration of H1299 and A549 cells. TRAIL reduced the expression of ferroptosis-related genes (FTH1, GPX4, and SLC7A11), increased the levels of LIP, iron, and Fe2+, and promoted lipid peroxidation, thereby predisposing NSCLC cells to ferroptosis. TRAIL up-regulated the expression of phosphate modification of ASK-1 and JNK. ASKI-1 inhibitor GS-4977 attenuated the effects of TRAIL on the viability, migration, invasion, and ferroptosis of H1299 cells. Furthermore, TRAIL further suppressed tumor growth and ferroptosis in mice tumor xenograft models. CONCLUSION: We indicated that overexpression of TRAIL induced ferroptosis in NSCLC cells and exerted anti-tumor effects. Mechanistically, TRAIL promoted ferroptosis by the activation of the ASK-1/JNK1 pathway. Our results may provide new therapeutic strategies for NSCLC.

13.
Clin. transl. oncol. (Print) ; 26(2): 434-445, feb. 2024. graf, tab, ilus
Artigo em Inglês | IBECS | ID: ibc-230188

RESUMO

Purpose Targeted therapy has not been effective for small cell lung cancer (SCLC) patients. Although some studies have reported on EGFR mutations in SCLC, a systematic investigation into the clinical, immunohistochemical, and molecular characteristics and prognosis of EGFR-mutated SCLCs is lacking. Methods Fifty-seven SCLC patients underwent next-generation sequencing technology, with 11 in having EGFR mutations (group A) and 46 without (group B). Immunohistochemistry markers were assessed, and the clinical features and first-line treatment outcomes of both groups were analyzed. Results Group A consisted primarily of non-smokers (63.6%), females (54.5%), and peripheral-type tumors (54.5%), while group B mainly comprised heavy smokers (71.7%), males (84.8%), and central-type tumors (67.4%). Both groups showed similar immunohistochemistry results and had RB1 and TP53 mutations. When treated with tyrosine kinase inhibitors (TKIs) plus chemotherapy, group A had a higher treatment response rate with overall response and disease control rates of 80% and 100%, respectively, compared to 57.1% and 100% in group B. Group A also had a significantly longer median progression-free survival (8.20 months, 95% CI 6.91–9.49 months) than group B (2.97 months, 95% CI 2.79–3.15), with a significant difference (P = 0.043). Additionally, the median overall survival was significantly longer in group A (16.70 months, 95% CI 1.20–32.21) than in group B (7.37 months, 95% CI 3.85–10.89) (P = 0.016). Conclusion EGFR-mutated SCLCs occurred more frequently in non-smoking females and were linked to prolonged survival, implying a positive prognostic impact. These SCLCs shared immunohistochemical similarities with conventional SCLCs, and both types had prevalent RB1 and TP53 mutations (AU)


Assuntos
Humanos , Masculino , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/dietoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptor ErbB-2 , Mutação , Prognóstico
14.
Int. microbiol ; 27(1): 277-290, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-230260

RESUMO

Background: Polymyxin B is considered a last-line therapeutic option against multidrug-resistant gram-negative bacteria, especially in COVID-19 coinfections or other serious infections. However, the risk of antimicrobial resistance and its spread to the environment should be brought to the forefront. Methods: Pandoraea pnomenusa M202 was isolated under selection with 8 mg/L polymyxin B from hospital sewage and then was sequenced by the PacBio RS II and Illumina HiSeq 4000 platforms. Mating experiments were performed to evaluate the transfer of the major facilitator superfamily (MFS) transporter in genomic islands (GIs) to Escherichia coli 25DN. The recombinant E. coli strain Mrc-3 harboring MFS transporter encoding gene FKQ53_RS21695 was also constructed. The influence of efflux pump inhibitors (EPIs) on MICs was determined. The mechanism of polymyxin B excretion mediated by FKQ53_RS21695 was investigated by Discovery Studio 2.0 based on homology modeling. Results: The MIC of polymyxin B for the multidrug-resistant bacterial strain P. pnomenusa M202, isolated from hospital sewage, was 96 mg/L. GI-M202a, harboring an MFS transporter-encoding gene and conjugative transfer protein-encoding genes of the type IV secretion system, was identified in P. pnomenusa M202. The mating experiment between M202 and E. coli 25DN reflected the transferability of polymyxin B resistance via GI-M202a. EPI and heterogeneous expression assays also suggested that the MFS transporter gene FKQ53_RS21695 in GI-M202a was responsible for polymyxin B resistance. Molecular docking revealed that the polymyxin B fatty acyl group inserts into the hydrophobic region of the transmembrane core with Pi-alkyl and unfavorable bump interactions, and then polymyxin B rotates around Tyr43 to externally display the peptide group during the efflux process, accompanied by an inward-to-outward conformational change in the MFS transporter...(AU)


Assuntos
Humanos , Polimixina B , Simulação de Acoplamento Molecular , Proteínas de Membrana Transportadoras , Ilhas Genômicas , Antibacterianos , Escherichia coli/genética , Microbiologia , Técnicas Microbiológicas , Águas Residuárias , Testes de Sensibilidade Microbiana
16.
Science ; 383(6688): 1228-1235, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330140

RESUMO

Many examples of exposed giant dike swarms can be found where lateral magma flow has exceeded hundreds of kilometers. We show that massive magma flow into dikes can be established with only modest overpressure in a magma body if a large enough pathway opens at its boundary and gradual buildup of high tensile stress has occurred along the dike pathway prior to the onset of diking. This explains rapid initial magma flow rates, modeled up to about 7400 cubic meters per second into a dike ~15-kilometers long, which propagated under the town of Grindavík, Southwest Iceland, in November 2023. Such high flow rates provide insight into the formation of major dikes and imply a serious hazard potential for high-flow rate intrusions that propagate to the surface and transition into eruptions.

17.
Comput Biol Med ; 171: 108141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367449

RESUMO

The synergistic advantage of combining tissue plasminogen activator (tPA) with pro-urokinase (proUK) for thrombolysis has been demonstrated in several in vitro experiments, and a single site proUK mutant (m-proUK) has been developed for better stability in plasma. Based on these studies, combination thrombolytic therapy with intravenous tPA and m-proUK has been suggested as a promising treatment for patients with ischemic stroke. This paper evaluates the efficacy and safety of the dual therapy by computational simulations of pharmacokinetics and pharmacodynamics coupled with a local fibrinolysis model. Seven dose regimens are simulated and compared with the standard intravenous tPA monotherapy. Our simulation results provide more insights into the complementary reaction mechanisms of tPA and m-proUK during clot lysis and demonstrate that the dual therapy can achieve a similar recanalization time (about 50 min) to tPA monotherapy, while keeping the circulating fibrinogen level within a normal range. Specifically, our results show that for all dual therapies with a 5 mg tPA bolus, the plasma concentration of fibrinogen remains stable at around 7.5 µM after a slow depletion over 50 min, whereas a rapid depletion of circulating fibrinogen (to 5 µM) is observed with the standard tPA therapy, indicating the potential advantage of dual therapy in reducing the risk of intracranial hemorrhage. Through simulations of varying dose combinations, it has been found that increasing tPA bolus can significantly affect fibrinogen level but only moderately improves recanalization time. Conversely, m-proUK doses and infusion duration exhibit a mild impact on fibrinogen level but significantly affect recanalization time. Therefore, future optimization of dose regimen should focus on limiting the tPA bolus while adjusting m-proUK dosage and infusion rate. Such adjustments could potentially maximize the therapeutic advantages of this combination therapy for ischemic stroke treatment.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Ativador de Plasminogênio Tecidual/efeitos adversos , Fibrinólise , Fibrinolíticos/uso terapêutico , Fibrinolíticos/efeitos adversos , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Fibrinogênio/farmacologia , Fibrinogênio/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Proteínas Recombinantes
18.
ACS Appl Mater Interfaces ; 16(3): 3064-3081, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215277

RESUMO

3D printing technology offers extensive applications in tissue engineering and regenerative medicine (TERM) because it can create a three-dimensional porous structure with acceptable porosity and fine mechanical qualities that can mimic natural bone. Hydroxyapatite (HA) is commonly used as a bone repair material due to its excellent biocompatibility and osteoconductivity. Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) can regulate bone metabolism and stimulate the osteogenic differentiation of stem cells. This study has designed a functionalized bone regeneration scaffold (3D H-P-sEVs) by combining the biological activity of BMSCs-sEVs and the 3D-HA scaffold to improve bone regeneration. The scaffold utilizes the targeting of fusion peptides to increase the loading efficiency of sEVs. The composition, structure, mechanical properties, and in vitro degradation performance of the 3D H-P-sEVs scaffolds were examined. The composite scaffold demonstrated good biocompatibility, substantially increased the expression of osteogenic-related genes and proteins, and had a satisfactory bone integration effect in the critical skull defect model of rats. In conclusion, the combination of EVs and 3D-HA scaffold via fusion peptide provides an innovative composite scaffold for bone regeneration and repair, improving osteogenic performance.


Assuntos
Vesículas Extracelulares , Osteogênese , Ratos , Animais , Durapatita/farmacologia , Tecidos Suporte/química , Regeneração Óssea , Engenharia Tecidual/métodos , Células-Tronco , Peptídeos/farmacologia , Impressão Tridimensional , Diferenciação Celular
19.
Environ Pollut ; 344: 123294, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38182011

RESUMO

With the increase of operation cycle in long-distance water conveyance project, the problem of silt or algae residue deposition in river channels is becoming more and more prominent, especially in the vicinity of some uncommonly used bifurcation and outflow gates along the water conveyance project. When the deposition reaches certain thickness, it will not only affect the water quality of local water bodies, but also seriously affect the normal operation of these bifurcation and outflow gates. In order to alleviate this problem, the prevention and control of algae residue deposition in long-distance water conveyance project is mainly explored from two perspectives: (1) the scouring effect on the bottom of the side channel is compared by studying different diversion ratios of the side channel; (2) The arc guide wing wall is built near the junction of the main channel and side channel. The simulation is conducted at 6 different included angles including -10°, -5°, 0°, 5°, 10° and 15°, and for non-guide wing wall. The incoming flow is simulated at 280 m3/s of general flow and 320 m3/s of design flow. A total of 14 groups of experiments are carried out for numerical simulation. It can be concluded that, when the incoming flow is held constant, a higher diversion ratio results in a more effective scouring of the bottom sediment in the side channel; when the included angles of the guide wing wall are -10°, -5°, 0° and 5°, it has a significant effect on the prevention and control of algae deposition near the junction; when the included angles of the guide wing wall are 10° and 15°, it cannot play a role in prevention and control and also hinders the normal operation of the river channel.


Assuntos
Plantas , Qualidade da Água , Animais , Rios/química , China
20.
Dalton Trans ; 53(4): 1673-1679, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169003

RESUMO

The electrocatalytic NO3- reduction reaction (NO3RR) to NH3 provides a promising pathway for ambient NH3 synthesis and environmental pollution treatment. Cu and its oxides are recognized as effective NO3RR electrocatalysts due to their favorable d-orbital energy levels and superior kinetics. In this work, mixed-valence Cu-based catalysts with tunable valence states were constructed via an inorganic salt-induced MOF-derived strategy. Notably, optimized Cu-CuxO/C-0.3 featured a Cu/Cu2O heterostructure and demonstrated the lowest Cu valence state. The resulting Cu/Cu2O heterointerface facilitated electron transfer and increased the density of electrochemically active sites, leading to an enhanced faradaic efficiency of 81.4% and a remarkable yield rate of 13.38 mg h-1 cm-2 (ca. 2.39 mol h-1 gcat.-1) at -0.8 V vs. RHE. This work presents insights for designing multi-phase heterostructured NO3RR catalysts and emphasizes their potential significance in efficient ammonia production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...